Conducting Leading-Edge Software R&D in a Globalized, **Commoditized World**

Dr. Douglas C. Schmidt Deputy Director, Research, and Chief **Technology Officer** Software Engineering Institute, CMU

What this Talk is About

• The impact of **globalization** & **commoditization** of information technology (IT) on

software R&D

Globalization

- "I speak Spanish to my God, Italian to women, French to men, German to my horse, & Japanese to my boss"
 - Paraphrasing King Charles the 5th of Spain

Commoditization of IT

- "Everything gets cheaper forever"
 - John Chambers. **CEO Cisco Systems**

Software R&D

Innovating software for competitive

advantage

Conducting Leading-Edge Software R&D in a Globalized, Commoditized World

My Background

My Background

Education

BA & MA, Sociology

MS & PhD, Computer **Science**

Academics

Asst. **Prof**

Assoc. **Prof**

Full **Prof**

Government/Industry

Program Manager & Deputy Director

Co-Chair, **Software Design** & Productivity

USAF Science Advisory Board

CTO

CTO

What I Do at the SEI

Provide technical management across SEI lines of business to ensure that SEI program R&D plans are aligned with overall SEI R&D strategy plans

Chief Technology Officer role

- Lead the formulation of the SEI's technology strategy
- Amplify external relationships with academia & industry
- Align the expertise of the SEI technical staff to identify & respond to the needs of sponsors, customers, & partners
- Help the SEI shape future innovations in complex software-reliant systems

Deputy Director, Research role

- (Meta) Manage the line funded programs, including the Internal R&D program
- Manage the technical interface to the DoD & other US government agencies

Conducting Leading-Edge Software R&D in a Globalized, Commoditized World

Consequences of IT Commoditization

The Road Ahead

CPU & network performance has increased by orders of magnitude in past decades

10 Megahertz to ~3 Gigahertz

1,200 bits/sec to 10+ Gigabits/sec

Extrapolating these trends another decade or so yields

- ~4-5 Gigahertz CPUs with 10s-100s of cores
- ~100 Gigabits/sec LANs
- ~100 Megabits/sec wireless
- ~10 Terabits/sec Internet backbone

Unfortunately, software quality & productivity hasn't improved as rapidly or predictably as hardware – especially for mission-critical distributed real-time & embedded systems

Why Hardware Improves So Consistently

Advances in hardware & networks stem largely from R&D on standardized & reusable APIs & protocols

TCP/IP

Why Software Fails to Improve as Consistently

Proprietary & Stovepiped Application & *Infrastructure Software*

Standard/COTS Hardware & **Networks**

Commodity software quality has historically lagged behind commodity hardware, especially for mission-critical distributed real-time & embedded systems

What's So Hard About Software?

Technical Complexities

Accidental Complexities

- Low-level APIs & debugging tools
- Interoperability & portability

Inherent Complexities

- Quality of service (QoS)
- Scheduling & synchronization
- Intermittent connectivity
- Information assurance

Human Nature

- Organizational & managerial impediments
- Economic impediments
- Policy impediments
- Political impediments
- Psychological impediments

Evolution of DoD Software Development

Legacy DoD systems have historically been:

- Stovepiped
- **Proprietary**
- Brittle & non-adaptive

Applications

Sensor

Technology base:

Endsystem

Proprietary MW

Mercury

Link16/11/4

Operating

System

Systems

- Expensive
- Vulnerable

Consequence: Small HW/SW changes have big impact on system QoS & maintenance

Evolution of DoD Software Development

- Middleware has effectively factored out many reusable services from traditional application responsibility
 - Essential for product-line architectures, common operating environments, open architectures, etc.

Example: The Evolution of Middleware

Applications

Domain-Specific Services

Common Middleware Services

> Distribution Middleware

Host Infrastructure Middleware

Operating Systems & Protocols

Hardware

Maturation of middleware driven by decades of government R&D funding

Historically, mission-critical apps were built directly atop hardware & OS

• Tedious, error-prone, & costly over lifecycles

There are layers of middleware, just like there are layers of networking protocols

Standards-based COTS middleware helps support key mission goals:

- Control end-to-end resources & QoS
- Leverage hardware & software technology advances
- Evolve to new environments & requirements
- Provide a wide array of reusable, off-the-shelf developer-oriented services

Consequences of Software Commoditization

Applications

autodetected IRQ (11) to improve performance ifcust (PC/TCP Class 1 packet driver - DIX Ethernet) free packets of length 160, 5 free packets of length kernel is using asynchronous sends ident Module occupies 0 bytes of conventional ne Hardware

Not all trends bode well for traditional business & technology leaders

- More emphasis on integration rather than programming
- Increased technology convergence & standardization
- Mass market economies of scale for technology & personnel
- More disruptive technologies & global competition
- Lower priced—but often lower quality hardware & software components
- The decline of internally funded R&D (eating our seed corn)
- Potential complexity cap in next-generation systems-of-systems & ultra-large-scale systems

Ultimately, success requires mastery of non-commoditized domains, e.g., distributed real-time & embedded systems

Reality Check: Software Expertise in the Flat World

Conducting Leading-Edge Software R&D in a Globalized, Commoditized World

SEI's R&D Strategy

DoD's Software Challenge

"New GAO report highlights \$6.9 billion in over-budget IT projects at the Department of Defense" – ZDNet, 9/30/2010

F/A-22

SBIRS High

Joint Tactical Radio Syst (JTRS)

Future Combat System (FCS)

"If software isn't a major part of the cost of weapons systems, then it's a very significant part of the cost ... You can build a frigate which costs \$500 million to buy, but the largest part of the expense would not be the hull or the weapons, it would be the hardware and software."

DoD Software is Growing in Size & Complexity

"[Software] continues to grow in importance in our weapons systems & remains a significant contributor to program cost, schedule, & performance shortfalls."

Honorable Pete Aldridge, former USD, ATL

DoD Software is Growing in Size & Complexity

From NRC Report Critical Code: Software Producibility for Defense (2010), sponsored by Office of the Secretary of Defense (OSD) www.nap.edu/openbook.php?record id=12979&page=R1

DoD Software Science & Technology Status

Misconception

The IT industry is a well-populated oasis for DoD programs

Reality

IT R&D investment is needed to seed & transform the IT desert for the DoD

Limitations with software contribute significantly to gap between (1) the IT the

DoD needs vs. (2) the IT the DoD can afford given

- Current level of technology maturity
- Decade-long tailing off of DoD software R&D investments (especially "6.2" investments)
- Atrophy of government expertise-base

DoD Software Science & Technology Status

Misconception

The IT industry is a well-populated oasis for DoD programs

Reality

IT R&D investment is needed to seed & transform the IT desert for the DoD

Why Commercial Industry Alone Won't Solve the DoD Software Problem

- Commercial R&D often inappropriate for DoD problems
 - It's targeted for specific products, not long-term tech improvement
 - Focused on selling products dependability is lower priority
 - Global resourcing/competition for R&D limits applicability to DoD

DoD Software Science & Technology Status

Misconception

The IT industry is a well-populated oasis for DoD programs

Reality

IT R&D investment is needed to seed & transform the IT desert for the DoD

Why Defense Industry Alone Won't Solve the DoD Software Problem

- R&D targeted at company-specific projects
- Software enhances competitiveness but not a direct profit driver for many DoD activities
- Less interest in retaining software technologies as company IP

What the SEI Does & the Value We Provide

Mission: advancing the practice of software engineering through research & technology transition

EXPLORE CREATE APPLY AMPLIFY SUSTAIN

What We Are Doing

What Difference It Makes

"Prevent surprise" to DoD, Intelligence Communities, & SEI

EXPLORE CREATE APPLY AMPLIFY SUSTAIN

What We Are Doing

What Difference It Makes

Produce innovations that revolutionize development of assured softwarereliant systems

Research, Technology, & System Solutions (RTSS)

Maintain US competitive edge software technologies vital to National security

EXPLORE CREATE APPLY AMPLIFY SUSTAIN

What We Are Doing

What Difference It Makes

Improve the sustainment, affordability, & availability of software-reliant systems through quantitative models, measurement, & management methods

Software Engineering Measurement & Analysis (SEMA)

Reduce the cost, acquisition time, & risk of our major defense acquisition programs

EXPLORE APPLY AMPLIFY SUSTAIN CREATE

What We Are Doing

What Difference It Makes

Fnable informed trust & confidence in using information & communication technology to ensure a securely connected world

Networked Systems Survivability (NSS) & **CERT**

EXPLORE APPLY AMPLIFY SUSTAIN CREATE

What We Are Doing

What Difference It Makes

Acquisition Support Program (ASP)

Ensure predictable mission performance in the acquisition, operation, & sustainment of software-reliant systems

Expedite delivery of technical capabilities to win the current fight

EXPLORE APPLY AMPLIFY SUSTAIN CREATE

What I've learned Leading/Managing R&D Groups

- Dissemination of information is essential for visibility & continued success/impact
 - Publish where it matters to ensure the most success/impact
 - e.g., where the bulk of the sponsors, customers, & partners reside
- Software R&D impact most often comes from working on hard problems together with partners, customers, & consumers
 - Be relevant, modern, practical, & scalable
- Collaborations are essential to expand R&D reach & amplify R&D expertise
- "The more you give, the more you get"
 - Open-source can be an impact accelerator

"A person who has the knowledge, but lacks the power to express it, is no better off than if he/she never had any ideas at all." - Thucydides

Concluding Remarks

- In a highly commoditized, IT-driven economy, human resources are an increasingly strategic asset
 - Quality technical staff are rarely "plug" compatible" or easily replaceable
- Premium value & competitive advantage accrues to individuals, organizations, & companies that
 - Continue to invest in software R&D &
 - Master principles, patterns, & protocols necessary to integrate COTS hardware & software to develop complex systems that can't be bought off-the-shelf yet
- To succeed requires close collaboration between academia, industry, & government

See blog.sei.cmu.edu for more discussions of SEI software R&D activities

Contact Information

Douglas C. Schmidt

Deputy Director, Research, & CTO

Telephone: +1 615-294-9573

Email: <u>dschmidt@sei.cmu.edu</u>

Web:

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

U.S. mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

+1 412-268-5800 SEI Phone:

SEI Fax: +1 412-268-6257

- This material SHALL NOT be reproduced or used for any other purpose without requesting formal permission from the SEI at permission@sei.cmu.edu.
- THE MATERIAL IS PROVIDED ON AN "AS IS" BASIS, & CARNEGIE MELLON DISCLAIMS ANY & ALL WARRANTIES, IMPLIED OR OTHERWISE (INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, RESULTS OBTAINED FROM USE OF THE MATERIAL, MERCHANTABILITY, AND/OR NON-INFRINGEMENT).

Conducting Leading-Edge Software R&D in a Globalized, Commoditized World

Backup

Host Infrastructure Middleware

Encapsulates & enhances native OS mechanisms to create reusable network programming components

Examples

• Java Virtual Machine (JVM), Common Language Runtime (CLR),

ADAPTIVE Communication Environment (ACE)

GENERAL POSIX, WIN32, AND RTOS OPERATING SYSTEM SERVICES www.cs.wustl.edu/~schmidt/ACE.html

Host infrastructure middleware components abstract away many tedious & error-prone aspects of low-level OS APIs

www.rtj.org

Domain-Specific Services

Common Middleware Services

> Distribution **Middleware**

Host Infrastructure

Middleware

en.wikipedia.org/wiki/Data Distribution Service

Distribution Middleware

- Defines distributed programming models whose reusable APIs & components automate & extend native OS capabilities
- Examples
 - OMG Real-time CORBA & the Data Distribution Service (DDS), W3C Simple Object Application Protocol (SOAP) Remote Procedure Calls (RPCs)

realtime.omg.org/

End-to-End Priority N1 App 1 N4 App 4 **Propagation** Cmd/Control Pub/Sub Pub/Sub Object in args operation() Client OBJ (Servant) N4 App 5 REF out args + return N2 App 2 Publish Schedulina Subscribe Service Domain B **IDL** Status Thread IDL SKEL **Pools STUBS** N5 App 6 N3 App 3 Standard **Object Adapter** Subscribe **Explicit Synchronizers** Pub/Sub Binding Domain C **Portable Priorities ORB CORE GIOP** N7 App 8 N6 App 7 Pub/Sub Pub/Sub **Protocol Properties**

Distribution middleware avoids hard-coding client & server application dependencies on object location, language, OS, protocols, & hardware

Common Middleware Services

 Augments distribution middleware by defining domainindependent services that focus on programming "business logic"

Domain-Specific Services Common **Middleware Services** Distribution **Middleware** Host Infrastructure Middleware

- Examples
 - Sun's J2EE, Microsoft's .NET, W3C Web Services, CORBA Component Model & Object Services

- Common middleware services support many recurring distributed system capabilities, e.g.,
 - Transactions & load balancing
 - Authentication & authorization
 - Database connection pooling & concurrency control
 - Active or passive replication
 - Dynamic resource management

Domain-Specific Middleware

- Services tailored to the requirements of particular domains, such as telecom, e-commerce, health care, process automation, avionics, etc.
- Examples

VME

BOARD 2

Siemens MED Syngo

- Domain-specific services for distributed electronic medical PHYSICIAN'S systems
- Used by all Siemens MFD business units worldwide

Boeing Bold Stroke

Domain-specific services for avionics mission computers

My R&D Background: Software for Distributed Real-time & Embedded (DRE) systems

In DRE systems the "right answer" delivered too late becomes the "wrong answer"!!

My Areas of Expertise: Patterns, Frameworks, & Tools for DRE System Middleware & Applications

Some Measures of My R&D Impact

500+ papers & 10 books

• "h index" = 62

• \$26+ M funding from 50+ sponsors

40+ Ph.D. & MS students graduated

 Created 3+ million lines of open-source software

• download.dre.vanderbilt.edu

• 1,000+ of commercial & military users

www.dre.vanderbilt.edu/users.html

GENERAL DYNAMICS

Military/Aerospace

Health Care

Financial Services

PATTERN-ORIENTED SOFTWARE ARCHITECTURE

www.dre.vanderbilt.edu/~schmidt/CV.html

ARCHITECTURE

ARCHITECTURE

www.dre.vanderbilt.edu/~schmidt/CV.html

Some Measures of My R&D Impact

- 500+ papers & 10 books
 - "h index" = 62
- \$26+ M funding from 50+ sponsors
- 40+ Ph.D. & MS students graduated
- Created 3+ million lines of open-source software
 - download.dre.vanderbilt.edu
- 1,000+ of commercial & military users
 - www.dre.vanderbilt.edu/users.html
- Spawned \$100+ million industry over past decade

